000 | 03146cam a22006374a 4500 | ||
---|---|---|---|
001 | musev2_60836 | ||
003 | MdBmJHUP | ||
005 | 20240815120749.0 | ||
006 | m o d | ||
007 | cr||||||||nn|n | ||
008 | 970626s1998 mau o 00 0 eng d | ||
010 | _z 97026416 | ||
020 | _a9780262257053 | ||
020 | _z026225705X | ||
020 | _z9780262193986 | ||
035 | _a(OCoLC)1053169863 | ||
040 |
_aMdBmJHUP _cMdBmJHUP |
||
100 | 1 | _aSutton, Richard S. | |
245 | 1 | 0 |
_aReinforcement Learning : _bAn Introduction / _cRichard S. Sutton and Andrew G. Barto. |
264 | 1 |
_aCambridge, Mass. : _bMIT Press, _c1998. |
|
264 | 3 |
_aBaltimore, Md. : _bProject MUSE, _c2018 |
|
264 | 4 | _c©1998. | |
300 |
_a1 online resource: _billustrations ; |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 0 | _aAdaptive computation and machine learning | |
505 | 0 | 0 |
_tContents -- _tSeries Foreword -- _tPreface -- _gI. _tThe Problem -- _g1. _tIntroduction -- _g2. _tEvaluative Feedback -- _g3. _tThe Reinforcement Learning Problem -- _gII. _tElementary Solution Methods -- _g4. _tDynamic Programming -- _g5. _tMonte Carlo Methods -- _g6. _tTemporal-Difference Learning -- _gIII. _tA Unified View -- _g7. _tEligibility Traces -- _g8. _tGeneralization and Function Approximation -- _g9. _tPlanning and Learning -- _g10. _tDimensions of Reinforcement Learning -- _g11. _tCase Studies -- _tReferences -- _tSummary of Notation -- _tIndex. |
506 | 0 |
_aOpen Access _fUnrestricted online access _2star |
|
520 | 1 | _a"In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability."--Jacket. | |
588 | _aDescription based on print version record. | ||
650 | 7 |
_aReinforcement learning. _2nli |
|
650 | 0 | 7 |
_aIntel·ligencia artificial. _2lemac |
650 | 1 | 7 |
_aLeren. _2gtt |
650 | 1 | 7 |
_aReinforcement. _2gtt |
650 | 1 | 7 |
_aKunstmatige intelligentie. _2gtt |
650 | 7 |
_aReinforcement learning. _2fast _0(OCoLC)fst01732553 |
|
650 | 7 |
_aReinforcement learning (Machine learning) _2blmlsh |
|
650 | 7 |
_aartificial intelligence. _2aat |
|
650 | 6 | _aRecherche operationnelle. | |
650 | 6 | _aReconnaissance des formes (Informatique) | |
650 | 6 | _aIntelligence artificielle. | |
650 | 6 | _aApprentissage par renforcement (Intelligence artificielle) | |
650 | 2 | 2 | _aOperations Research |
650 | 2 | 2 | _aPattern Recognition, Automated |
650 | 1 | 2 | _aArtificial Intelligence |
650 | 0 | _aOperations research. | |
650 | 0 | _aPattern recognition systems. | |
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aReinforcement learning. | |
655 | 7 |
_aElectronic books. _2local |
|
700 | 1 | _aBarto, Andrew G. | |
710 | 2 |
_aProject Muse. _edistributor |
|
830 | 0 | _aBook collections on Project MUSE. | |
856 | 4 | 0 |
_zFull text available: _uhttps://muse.jhu.edu/book/60836/ |
999 |
_c232096 _d232095 |